AK STEEL’S ALUMINIZED 409 AND 439 STAINLESS STEEL products have been developed to provide the automotive industry with life-of-the-car exhaust system materials. Type 1 hot dip aluminum coating provides excellent resistance to pitting from muffler condensate and road salt, allowing the exhaust system to resist internal chlorides and retain good external appearance, even at uncoated welds. The aluminum coating significantly extends the life of the exhaust system over that of bare stainless.

- Red rust protection to 800 °F (427 °C).
- Oxidation resistance to 1550 °F (843 °C) (Aluminized 409 and 1700 °F (927 °C) (Aluminized 439).
- Excellent formability for exhaust system components.
- Easier to post-paint or coil-coat than uncoated stainless.
Product Description

COATING
The Type 1 Aluminized coating, containing approximately 91% aluminum and 9% silicon, is metallurgically bonded to the stainless steel substrate. The hot dip coating process assures a tightly adherent, uniform coating on both sides of the product. A thin alloy layer readily permits normal forming practices without incurring significant damage to the coating.

Aluminized Steel Type 1 Stainless 409 and 439 are currently available in a coating weight of 0.25 oz./ft.² minimum. A schematic of a cross section is shown in Figure 1.

APPLICATIONS FOR ALUMINIZED 409/439

HIGH TEMPERATURE PROPERTIES
- Oxidation resistance of the stainless substrate is enhanced by diffusion of the aluminum coating (Figure 2). AL409 is resistant to 1550 °F (843 °C). AL439 is resistant to 1700 °F (927 °C).
- At temperatures above 800 °F (427 °C), the diffused aluminum coating provides long-term resistance to hot salt attack and wet salt pitting in front pipes, converter shells and intermediate pipes. The diffused aluminum coating will take on a dark gray appearance and is subject to cosmetic red rusting.
- Creep and fatigue strength equal to the stainless steel substrate.
Corrosion

EXTERNAL EXHAUST SALT-HUMIDITY PITTING CORROSION

At relatively low temperatures, e.g. 600 °F (316 °C), 409 forms a heat tinted (oxidized) surface and pits readily after exposure to moist salt. The hot dip aluminum coating provides long term galvanic protection against pitting corrosion.

Uncoated 439 is only slightly affected by pitting after 600 °F (316 °C) exposure, but will form surface red rust due to heat tinting. Aluminized 439 provides long term protection against cosmetic red rusting.

After a 800 °F (427 °C) heat treatment, the four materials tested all show at least double the pitting rates compared to 600 °F (316 °C). However, the effects of increased heat tint are much greater for uncoated 439.

Test Cycle:
Sample – 4 x 6 in. (102 x 152 mm) formed
Heat 1 hr. in air once per week
Daily dip 15 min. – 5% NaCl
Air dry (75 min.)
Humidity cabinet – 85% RH, 140 °F (60 °C) (remainder of day)
Corrosion

EXTERNAL EXHAUST SALT-HUMIDITY PITTING CORROSION (CONTINUED)

A 1000 °F (538 °C) heat treatment in the corrosion cycle test fully alloys the aluminum coating with the stainless steel substrate. The lower galvanic potential of the thick alloy coating provides longer term protection against pit initiation. The effects of oxidation, plus salt on the higher chromium uncoated grades, cause earlier perforation compared to lower temperature testing. In Figure 5, bare 409 shows a shelf in pitting rate and eventually exhibits large weight loss due to development of a loose scale jacket.

A thinner walled AL439 product can result in improved catalytic converter life and reduced weight compared to bare 409.

Field corrosion data indicates that the 1000 °F (538 °C) test equivalence is approximately 1 week = 1 year in severe salt climate service. At lower test temperatures, the indicated equivalence is more than 1 year.

Due to rapid pitting rates after a 1400 °F (760 °C) heat treatment, the measurement is switched to weight loss. All bare stainless grades tested exhibit similar behavior, while the coated grades continue to benefit from extended galvanic protection by the fully alloyed coating. Salt corrosion of this type is generally associated with salt held on a pipe by insulation or shielding.

Figure 5 – Converter Simulation
1000 °F (538 °C) Heat Treatment – Bold Exposure

Figure 6 – Front Pipe Simulation
1400 °F (760 °C) Heat Treatment – Bold Exposure
Muffler Condensate Corrosion

Aluminized Steel Type 1 Stainless 409 and 439 are highly resistant to acid condensate pitting. The aluminum coating provides protection against the start of pitting for much of the vehicle life. It galvanically protects against initial converter chloride corrosion at very low pH levels. This protection can be extended even further by avoiding dissimilar material contacts. Figure 7 shows pitting rates in a synthetic condensate boil-down test.

Daily Test Cycle:

- Partially immerse flat sample in synthetic condensate* and slowly evaporate to dryness at 194 °F (90 °C) – approx. 12 – 16 hrs.
- When dry, heat sample to 482 °F (250 °C) for 1 hour – humidity cabinet at 122 °F (50 °C) 85% RH – approx. 6 hours.

*Synthetic Condensate:

Ammonium salts of Cl⁻ (100 ppm);
NO₃ (100 ppm); CO₂ (3000 ppm);
SO₂ (5000 ppm); initial pH = 8.5

FIGURE 7 – BOILING BEAKER CYCLE TEST FOR MUFFLER CONDENSATE CORROSION
Mechanical Properties

Typical mechanical properties for Aluminized Steel Type 1 Stainless 409 are shown in Table 1.

See Table 2 for Aluminized Steel Type 1 Stainless 439.

<table>
<thead>
<tr>
<th>TABLE 1 – MECHANICAL PROPERTIES ALUMINIZED 409</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sheet Thickness, (Nom.)</td>
</tr>
<tr>
<td>--------------------------</td>
</tr>
<tr>
<td>0.022 to under 0.030 in. (0.56 to under 0.76 mm)</td>
</tr>
<tr>
<td>>0.030 in. (0.76 mm)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TABLE 2 – MECHANICAL PROPERTIES ALUMINIZED 439</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sheet Thickness, (Nom.)</td>
</tr>
<tr>
<td>--------------------------</td>
</tr>
<tr>
<td>0.022 to under 0.030 in. (0.56 to under 0.76 mm)</td>
</tr>
<tr>
<td>>0.030 in. (0.76 mm)</td>
</tr>
</tbody>
</table>
Weldability

- High Frequency – Aluminized Type 1 Stainless 409 and 439 are welded using established techniques for uncoated stainless and aluminized carbon steels.
- Laser – Successfully applied to exhaust tubing and seam welds.
- Spot and Resistance Seam – Techniques are similar to those for other aluminized steels, and the weld structure will be similar to that of uncoated 409 or 439 Stainless Steel.
- Gas Metal Arc Welding (GMAW) – Filler wires recommended are: 439Ti, 18 Cr-Cb, 308L and 409 Cb (AL409 only).
- Gas Tungsten Arc Welding (GTAW) – Not recommended without sufficient filler wire to avoid excess aluminum in the weld.
- Carbon steel or lower chromium wire should be avoided because of lower oxidation resistance and sacrificial corrosion due to galvanic coupling with Type 409 or 439.

MORE INFORMATION/TECHNICAL ASSISTANCE
AK Steel’s Technical Representatives can provide you with more detailed information concerning these products. They are also available to assist you in solving any welding, forming, painting or other material selection issue.

OUTSIDE PROCESSING
Some services AK Steel can provide through arrangements with outside processors include: tailored blanks, tension leveling, resquaring, slitting, cutting-to-length, and coil coating.

MILL LIMITS
Aluminized Steel Type 1 Stainless 409 and 439 are generally available in thicknesses from 0.018 – 0.080 in. (0.46 – 2.03 mm), and widths up to 48 in. (1219 mm) depending on thickness.
For sizes outside these limits, contact your AK Steel sales representative.
AK Steel Corporation
9227 Centre Pointe Drive
West Chester, OH 45069
844.STEEL99 | 844.783.3599
www.aksteel.com
sales@aksteel.com

AK Steel is a leading producer of flat-rolled carbon, stainless and electrical steel products, primarily for the automotive, infrastructure and manufacturing, including electrical power, and distributors and converters markets. Through its subsidiaries, the company also provides customer solutions with carbon and stainless steel tubing products, die design and tooling, and hot- and cold-stamped components. Headquartered in West Chester, Ohio (Greater Cincinnati), the company has approximately 9,200 employees at manufacturing operations in the United States, Canada and Mexico, and facilities in Western Europe. Additional information about AK Steel is available at www.aksteel.com.

The information and data in this document are accurate to the best of our knowledge and belief, but are intended for general information only. Applications suggested for the materials are described only to help readers make their own evaluations and decisions, and are neither guarantees nor to be construed as express or implied warranties of suitability for these or other applications.

Data referring to material properties are the result of tests performed on specimens obtained from specific locations of the products in accordance with prescribed sampling procedures; any warranty thereof is limited to the values obtained at such locations and by such procedures. There is no warranty with respect to values of the materials at other locations.